40 research outputs found

    A comparative study of super- and highly-deformed bands in the A ~ 60 mass region

    Full text link
    Super- and highly-deformed rotational bands in the A ~ 60 mass region are studied within cranked relativistic mean field theory and the configuration-dependent shell-correction approach based on the cranked Nilsson potential. Both approaches describe the experimental data well. Low values of the dynamic moments of inertia J^(2) compared with the kinematic moments of inertia J^(1) seen both in experiment and in calculations at high rotational frequencies indicate the high energy cost to build the states at high spin and reflect the limited angular momentum content in these configurations.Comment: 11 pages, 4 PostScript figures, Latex, uses 'epsf', submitted to Phys. Lett.

    Genetic Sharing with Cardiovascular Disease Risk Factors and Diabetes Reveals Novel Bone Mineral Density Loci.

    Get PDF
    Bone Mineral Density (BMD) is a highly heritable trait, but genome-wide association studies have identified few genetic risk factors. Epidemiological studies suggest associations between BMD and several traits and diseases, but the nature of the suggestive comorbidity is still unknown. We used a novel genetic pleiotropy-informed conditional False Discovery Rate (FDR) method to identify single nucleotide polymorphisms (SNPs) associated with BMD by leveraging cardiovascular disease (CVD) associated disorders and metabolic traits. By conditioning on SNPs associated with the CVD-related phenotypes, type 1 diabetes, type 2 diabetes, systolic blood pressure, diastolic blood pressure, high density lipoprotein, low density lipoprotein, triglycerides and waist hip ratio, we identified 65 novel independent BMD loci (26 with femoral neck BMD and 47 with lumbar spine BMD) at conditional FDR < 0.01. Many of the loci were confirmed in genetic expression studies. Genes validated at the mRNA levels were characteristic for the osteoblast/osteocyte lineage, Wnt signaling pathway and bone metabolism. The results provide new insight into genetic mechanisms of variability in BMD, and a better understanding of the genetic underpinnings of clinical comorbidity

    A cognitively motivated route-interface for mobile robot navigation

    No full text
    Abstract A more natural interaction between humans and mobile robots can be achieved by bridging the gap between the format of spatial knowledge used by robots and the format of languages used by humans. This enables both sides to communicate by using shared knowledge. Spatial knowledge can be (re)presented in various ways to increase the interaction between humans and mobile robots. One effective way is to describe the route verbally to the robot. This method can permit computer language-naive users to instruct mobile robots, which understand spatial descriptions, to naturally perform complex tasks using succinct and intuitive commands. We present a spatial language to describe route-based navigation tasks for a mobile robot. The instructions of this spatial language are implemented to provide an intuitive interface with which novice users can easily and naturally describe a navigation task to a mobile robot in a miniature city or in any other indoor environment. In our system, the instructions of the processed route are analyzed to generate a symbolic representation via the instruction interpreter. The resulting symbolic representation is supplied to the robot motion planning stage as an initial path estimation of route description and it is also used to generate a topological map of the route’s environment.

    Growth of osteoblasts on lithographically modified surfaces

    No full text
    10.1016/j.nimb.2007.02.008Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms2601130-135NIMB

    Comparison of dose-finding designs for narrow-therapeutic-index drugs: Concentration-controlled vs. dose-controlled trials

    No full text
    This study compared the performances of randomized dose-controlled trials (DCTs) with those of concentration-controlled trials (CCTs) in dose finding for drugs with narrow therapeutic indexes. A simulation-based study was performed for a hypothetical immunosuppressant agent with two clinical end points. Different scenarios were simulated and analyzed, and three designs were compared: one DCT and two CCTs (a target-equivalent CCT and a variability-equivalent CCT). The DCT was consistently superior to the CCTs in the following aspects: (i) precision and bias reduction in parameter estimates, (ii) precision and bias reduction in the estimate of optimal exposure, (iii) bias reduction in prediction of the estimated therapeutic benefit at estimated optimal exposure, and (iv) bias reduction in prediction of the estimated benefit of therapeutic drug monitoring as compared with fixed dosing. DCT designs are more informative when describing the exposure-response relationship for drugs with narrow therapeutic indexes and provide a better basis for decision making with regard to dosing strategy

    Relativistic CI calculations of spectroscopic data for the 2p6 and 2p53l configurations in Ne-like ions between Mg III and Kr XXVII

    No full text
    Energies, E1, M1, E2, M2 transition rates, oscillator strengths, and lifetimes from relativistic configuration interaction calculations are reported for the states of the 2p6, 2p53s, 2p53p, and 2p53d, configurations in all Ne-like ions between Mg III and Kr XXVII. Core–valence and core–core correlation effects are accounted for through single and double excitations to increasing sets of active orbitals. The Breit interaction and leading quantum electrodynamic effects are included as perturbations. The results are compared with experiments and other recent benchmark calculations. In Mg III, Al IV, Si V, P VI, S VII, and Ar IX, for which experimental energies are known to high accuracy, the mean error in the calculated energies is only 0.011%

    Mobility determination of lead isotopes in glass for retrospective radon measurements rad

    No full text
    In retrospective radon measurements, the 22-y half life of 210Pb is used as an advantage. 210Pb is often considered to be relatively immobile in glass after alpha recoil implanted by 222Rn progenies. The diffusion of 210Pb could, however, lead to uncertain wrong retrospective radon exposure estimations if 210Pb is mobile and can escape from glass, or lost as a result of cleaning-induced surface modification. This diffusion was studied by a radiotracer technique, where 209Pb was used as a tracer in a glass matrix for which the elemental composition is known. Using the ion guide isotope separator on-line technique, the 209Pb atoms were implanted into the glass with an energy of 39 keV. The diffusion profiles and the diffusion coefficients were determined after annealing at 470–620°C and serial sectioning by ion sputtering. In addition, the effect of surface cleaning on diffusion was tested. From the Arrhenius fit, the activation enthalpy (H) was determined, which is equal to 3.2 ± 0.2 eV, and also the pre-exponential factor D0, in the order of 20 m2s−1. This result confirms the assumption that over a time period of 50 y 209Pb (and 210Pb) is effectively immobile in the glass. The boundary condition obtained from the measurements had the characteristic of a sink, implying loss of 209Pb in the topmost surface at high temperatures.peerReviewe
    corecore